

Surprising Volumetric Effects in Cinema 4D*

Part 1: The Magic of Visible Lights

by Marc Potocnik, Intel® Software Innovator

Creating Clouds, Fog and Nebulae in 3D Digital Art

Volumetric effects such as clouds, fog, nebulae or fire-like structures are a common task
in the daily work of a 3D artist. Technical approaches for Cinema 4D* normally are done
with fluid- or particle-simulations with contemporary third-party plugins such as
Turbulence FD* or X-Particles*. Additionally, Cinema 4D still hosts the aging voxel-based
PyroCluster* system, a former standard tool for a variety of volumetric effects.

In addition to those mentioned, there are other techniques that are more
straightforward, but which you might not think of initially: using only onboard tools
rather than the approaches mentioned above. Due to their complexity, we will deal with
them in two parts. Part 1: The Magic of Visible Lights will cover creating clouds, fog and
nebulae and Part 2: Erupting Plasma and Sliced Clouds will address solar flares and puffy
clouds.

Thin Clouds and Fog - Visible Volumetric Lights with Built-in Noises
The most simple and straightforward approach to creating basic atmospheric effects is
using the built-in light sources of Cinema 4D as actual clouds or fields of fog. With a light
source option of creating “foggy“ visible light and some built-in noise functions you can
create thin, non-shadow casting clouds or fields of fog in a breeze. But before getting too
far into the details, let’s explore some of the important basics of light sources in Cinema
4D. When creating a light in Cinema 4D the corresponding Attribute Manager will show a
bunch of parameters and tabs (see figure 1) to customize.

Figure 1: Light Object Attribute Manager

 General Tab, dropdown menu Type offers a variety of different types of lightsources.

Please note: the geometrical shape of your light emission will determine the shape of
your visible/ volumetric light.

••• Omni:
••• concentric light emission
••• Spot:
••• conical light emission
••• Infinite:
••• parallel light emission from an infinitely distant point
••• Area:
••• sample-based spatial light emission with an actual geometric shape
••• Square spot:
••• pyramid-shaped light emission
••• Parallel:
••• parallel light emission
••• Parallel spot:
••• parallel cylindrical light emission
••• Square parallel spot:
••• parallel cuboid light emission
••• IES:
••• simulates manufacturer-specific behavior of lighting systems with

photometric intensity

Shadows offers a choice of three types of shadow generation:

••• Shadow Maps (soft):
••• creates a "shadow texture" from the point of view of the light source with

resolution, blur radius and proximity bias to be selected
••• Ray traced (hard):
••• creates an infinitely hard shadow from the point of view of the light source,

by far the oldest and most unrealistic type of shadow
••• Area:
••• the only type of shadow that becomes sharper or more diffuse depending

on the distance to the shadow casting object. Useful in combination with
Area lights or Infinite light

When creating thin clouds or fields of fog, shadows don’t have to be used as the visible
structure comes from the light source itself. However, for the creation of thick puffy
clouds the use of area shadows will be discussed in Part 2.

Visible Light has three modes to choose from for the actual effect to simulate thin
clouds, nebulae or foggy air:

••• Visible:
••• objects in visible light do not cast a volumetric shadow, even if a of Shadow

type is activated
••• Volumetric:
••• objects in visible light cast volumetric shadows, even if there is no Shadow

type activated
••• Inverse volumetric:
••• visible light is only generated in the volumetric shadow of objects

Visibility Tab

The Visibility tab references the Visible Light drop-down menu in the General tab and
offers numerous parameters for defining the decrease of visible light along the light
source axis or radius:

••• Edge Falloff: decreases the visibility along the radius (e.g., of a Parallel
Spot)

••• Inner Distance/ Outer Distance: defines the start- and end-point of the
Visible Lights concentrical Falloff (e.g., of an Omni Light)

These Falloff parameters are independently working from the light’s intensity Falloff in
the Details tab - but the handles of these parameters in the editor can easily be confused
with each other.

Brightness controls the intensity of visible light. Dust adds a black component to the
visible light at low brightness values, creating the impression of a covering cloud of dust.
Relative Scale allows you to squash and stretch the visible light unproportionally and
independently from its actual shape.

If the Volumetric option is selected in the General tab / Visible Light dropdown menu,
objects in visible light cast volumetric shadows - even if there is no shadow type
activated for the light source.

Sample-based Volumetrics
The resolution of this volumetric effect is determined by the Sample Distance
parameter; its value has to be reduced to increase samples. Please note: a high value (low
sample distance) speeds up rendering but may result in sliced artifacts. For a smooth
result you will need a lower sample distance which may slow down rendering, see fig. 2
for examples of high sample distance vs. low sample distance.

Figure 2: On Left - High Sample Distance, On Right - Low Sample Distance

When combining volumetric light and a complex scene setup (complex objects, hires
textures, strong anti-aliasing) things can get exceptionally slow. Always render volumetric
lights separately "on black" and then combine it with the scene during compositing.

With these parameters activated and adjusted, begin creating effects such as searching
spots, halos, etc. Use the Noise tab to define more specific and irregular structures
needed to create clouds and nebulae effects.

Noise Tab
The Noise tab references Visible Light (if selected) and adds random irregularities to it in
terms of visibility and lighting. Available noise functions include:

• NoiseSoft Turbulence
• Hard Turbulence
• Wavy Turbulence

These noises can be adjusted in terms of Octaves (level of iterations and detail),
Brightness, Size and Contrast. Movement can be adjusted by the Velocity (idle motion),
Wind (direction of uniform movement) and Wind Velocity (speed) parameters.

The Local checkbox determines whether a global or local noise is used. In case of a
deactivated checkbox, moving light sources move through a global noise. If activated (by
default), moving light sources take noise structures with them. Visibility Scale defines
the size of the noise itself.

Note: As visible light sources with noise are an older, but still up-to-date, feature of
Cinema 4D the four types of Noises are not directly related to the onboard noise shaders.

Case Study – Ditching of US Airways Flight 1549

German TV documentary “Leschs Kosmos”, epsiode “The Nightmare of Flying” for
channel ZDF, stages the hidden dangers of aviation. Omni Lights for thin, turbulent
clouds in the foreground were used for the sequence on the emergency ditching of US
Airways Flight 1549 in the Hudson River.

Omni Lights were set to Visible but not to Volumetric. The Illumination checkbox was
deactivated to prevent the clouds from emitting light. The Omnis were slightly flattened
by the Relative Scale parameter in the Visibility tab. In the Noise tab a Hard Turbulence
was applied with strong negative Brightness and strong positive Contrast, as shown in
figure 3.

Figure 3: Screenshot of parameters set to create thin, turbulent clouds in foreground

More information on the making of this TV documentary can be seen detailed in
SIGGRAPH 2015 Rewind: Scientific Eyecandy – VFX for TV-Documentaries with C4D R17

This personal project is based on the Mountainvista" benchmark scene created for Intel
in the spring of 2018. Landscaping creation is completely procedural from rocks,
pebbles, roots and dirt to valleys and mountains. Large fields of fog in the distance are
crafted with the same simple techniques as described above: large flat Omni Lights with
Visible light only and a Hard Turbulence noise.

Summarizing Creating Visible Volumetric Lights with Built-in Noises
With only Omni Lights, visible light and some high-contrast noise-functions you can
create thin, non-shadow casting clouds or fields of fog. This straight-forward technique is
absolutely easy to use and is literally right at your fingertips when needed.

The limitation of this approach is that it utilizes just four basic types of noise, which
cannot be colored or combined with the more convenient Cinema 4D shaders. The next
section on Stellar Nebulae looks at how you can break free of these restrictions with
another approach.

Stellar Nebulae - Visible Volumetric Lights as Containers for Volumetric
Shaders

A more advanced approach to creating volumetric effects is based on the principle of
texturing lights: you can easily apply any material to a light source. If the active
Transparency Channel contains for example, a 3D noise shader, the volumetric effect of
your light source can use the shader for three-dimensional volumetric texturing.

This makes your lightsource an aquarium aquarium for any shader that’s being used
inside the Materials Transparency Channel. With this in mind, it is easy to create more
complex structures such as gas fields or stellar nebulae.

The texture projection method in the texture tag plays only a minor part – as long as you
are using three-dimensional shaders such as noise shaders applied in Object- or World-
Space or 3D-Gradients you don’t have to care about it.

Real-world example: On the left side of figure 4 below, a 2D Tiles Shader is applied onto
a volumetric Parallel Spot (no Edge Falloff in Tab Visibility) with flat texture projection.
On the right side of figure 4, a 3D Noise Shader is applied onto the Parallel Spot. The flat
texture projection doesn’t have an effect as the noise works three-dimensionally (for
more info on this, see Object Space below).

Figure 4: On Left – 2D Tile Shader, On Right – 3D Noise Shader

One of the main limitations to the first approach in this article, was the strict use of only
four built-in noise functions. To use the more complex noise shaders in Cinema 4D, such
as a 3D-texture for volumetric lights, it is important to get familiar with the basics of
noise shaders first.

Noise Shader – Systematic Randomness
Natural phenomena such as clouds, rock or water surfaces contain random structures
with different behavior and complexity. In computer graphics, noise shaders can simulate
these natural structures. With noises it is possible to give surfaces a random but
reproducible irregularity and thus make them appear more analogous and natural.

Noises can actually be used to modulate all material effects. Compared to conventional
texture mapping, noises offer the key advantage that they can also be applied three-
dimensionally to objects, thus eliminating the need for all questions of a correct texture
projection or UVW mapping.

US mathematician Ken Perlin was the first to devote himself to the development of a
noise shader. In 1981 he was involved in the development of the Disney* classic TRON as
an employee of MAGI in Elmsford, New York. With his pioneering work on noise shaders
Perlin wanted to provide generated objects with a less machine-like and more natural
appearance. In 1985 Perlin wrote a SIGGRAPH paper about the resulting Perlin-Noise, in
1997 he was awarded an Oscar for his achievements.

Through various further developments, including Steven Worley’s Cell-/Voronoi-Noise
from 1996, a handful of noise shaders found their way into the Cinema 4D Release R5 in
1998. As part of the shader plug-in, Smells Like Almonds (SLA) developed by David
Farmer, and two dozen more complex noise shaders for Cinema 4D were available from
2001 on, with exotic names like Poxo, Luka, Sema or Pezo. Since the Cinema 4D 7.2
Release they have become an integral part of Cinema 4D and are still onboard.

With the classic Material system of Cinema 4D, noise shaders are available as Channel
Shaders and can be found in the shader dropdown menu of the Material Editor under
Noise. In the recent Release 20 of Cinema 4D, noise shaders are also available as Nodes
of the new Node-based Material system. They can be found under Noise in the Node
Editors Asset Manager. As the projects shown in this article were made with Cinema 4D
R19 we will focus on the Channel Shader version.

Poxo, Sema, Stupl & Co – A Family of Noises
Cinema 4D's noise shaders have very individual characteristics and are predestined for
different purposes. A few examples include:

• Noise, as the default choice, strongly resembles a Perlin Gradient Noise: all
components appear to be about the same size and brightness, fluctuations are
represented by soft gradients. Higher octaves, such as arithmetic iterations, are
not available. Its higher octave sibling Turbulence can be used to create thin puffy
clouds.

[embed]https://vimeo.com/248867226[/embed]
Poxo shows irregular structures more clearly and plays to its strengths with large
scaling starting from global "1000%" creating the kind of net-like structures
known as foam or turbulent clouds. Higher octaves cause details to be added
while at the same time burning up bright areas.

[embed]https://vimeo.com/189844435[/embed]

• Luka with its turbulent details reminiscent of mountain ridges and river beds
offers a good basis for fine, thin clouds.

[embed]https://vimeo.com/284331194[/embed]

• Naki, on the other hand, with its turbulent blob-like nature and disproportionate
strain, is ideal for depicting energetic structures or erupting plasma, or the sun’s
evolving corona.

[embed]https://vimeo.com/253405164[/embed]

The noise shaders may be a group of strangers, but they are obviously relatives: Noise
looks like a Turbulence with only one octave, Turbulence and FBM seem to be siblings,
and their smeared versions such as Wavy Turbulence, etc. look like brothers and sisters
as you can see in figure 5. All of this similarity has one reason: all noises in Cinema 4D are
the offspring of Perlin and Voronoi Noise.

Figure 5: Examples of how similar the different turbulence noises appear

For the selection and characterization of noises, the help section of Cinema 4D offers
comprehensive and large-format overview images. An additional description of the
shaders can be found in the slightly older Cinema 4D Nnoise Texture Rreference.

Usage of Noise ShadersWhether using noises as channel shaders or as nodes – noises
follow a principal function and have several important parameters in common: the type
of noise is selected via the drop-down menu Noise. The Octaves parameter indicates the
calculation iterations, followed by Size, Animation speed and gradation (Clipping,
Brightness, etc.) parameters.

Noises are applied in various reference systems. They can be selected via the drop-down
menu Space. Four of these reference systems are of practical importance:

• UV (2D): projects the noise onto the UV coordinates of the texture and
deformations of the object are taken into account

• Texture: uses the coordinates specified in the texture tag and deformations of the
object are ignored

• Object: applies the noise three-dimensionally to the axis system of the object and
rotations, movements and scaling of the object are taken into account

• World: applies the noise three-dimensionally to the axis system of the world so
the noise stays in place while rotations, movements and scaling of the object are
ignored

In terms of the creation of volumetric effects, the Spaces Object is the most interesting
as in this case noises range three-dimensionally through the volume of the objects they
are applied to – or the volume of a visible volumetric light source.

To create more complex volumetric structures, it is important to have the possibility to
combine, layer and mask different shaders inside the same Material channel. For this
purpose, the Cinema 4D Shader toolset contains the Layer Shader.

Layer Shader
In order to combine Cinema 4D shaders in a modular and flexible way, the Layer Shader
is key. It acts as a kind of "container" in which layers (shaders or bitmaps) are mixed in a
Photoshop* style, masked with others or used in different layer modes. The layer modes
include common modes such as Normal, Multiply and Screen but also a Layer Mask
mode. In this layer mode, the layer above, like a shader or bitmap, is masked with the
grayscales of the layer below.

In the Layer Shader, bitmaps can be loaded by clicking on Image. Shaders created by
clicking on Shader. With a right click on a layer, bitmaps and shaders can also be copied
(Copy Shader/ Image) and pasted (Insert Shader/ Image).

For better organization, the Folder button can be used to create a folder and layers can
be inserted into it. In addition, with the Effect button manipulations like Colorization,
Distortion, Gradation Correction etc. can be created on the layers below.

Tip: If you load a shader/ bitmap in a material channel and then create a layer shader (by
clicking on the triangle button on the right-hand side of “Texture”), the texture is
automatically contained in the layer shader as a layer.

Masking is an important topic inside a layer shader as it can be used to restrict certain
aspects of the shader setup to particular areas of your lights volume.

Gradient Shaders
The Gradient Shader creates 2D gradients (on surfaces) or 3D gradients (though objects
or lights volumes). 2D gradients can run linearly along the U or V texture axis or in certain
shapes, such as circular, box or star. They can be rotated by angle, broken up by
turbulence and frequency with animated irregularities and applied beyond texture tiles
by deactivating cyclic.

3D gradients, on the other hand, penetrate the volume of the object or the volumetric
light source. Start and end values of 3D gradients refer to the axis system selected in the
space drop-down menu, e.g., object or world. Start and end values on several axes can be
used to angle such as a linear or cylindrical 3D gradient. 3D gradients are ideal
companions to mask 3D noise shaders inside a layer shader.

Real-world example: On the left in figure 6 below, the three-dimensional Sema-Noise is
exactly determined by the edges of the Parallel Spot (radius 100cm). On the right in
figure 6 a gradient in 3D Cylindrical mode is used as a layer mask. The gradient is
applied with a radius of 150cm along the Z-Axis of the light source and uses large scale
turbulence. All of this breaks up the edges of the 3D noise with some irregularity.

Figure 6: On Left - 3D Sema-Noise, On Right - 3D cylindrical gradient

Case Study: A Question of Time (Stellar Nebulae)

A project for germen TV-documentary “Terra X” of german channel ZDF shows stellar
nuclear fusion, the structure of salt and the principle of uranium-lead dating. The stellar
nebulae in the sequence about hydrogen and helium atoms used exactly the principle as
described above: one volumetric light source as a Light Container.

As the camera travels linearly through the visible volumetric light of a parallel spot, a
hard turbulence noise roughly shapes the large-scale structure of the light. A material
named “Nebulae” is applied to the light source and the visibility is set to 8000% to depict
even darker noise details. The material only contains an active transparency channel with
a layer shader inside.

Figure 7: Screenshot displaying settings to create nebulae

Inside the layer shader, 3D noises and 3D gradients are organized in folders related to
the logical structure of the stellar nebulae: mega structures, medium structures, small
fogs, blue, etc. Folders are treated like normal layers and are masked by noises or
gradients in layer mask mode.

Figure 8: Screenshot of parameters to set to create nebulae

Click on the tiny triangle beside a folder to reveal its content: noises of different style and
behavior are colorized by the same-named layer effect and restricted/masked to certain
areas of the light source by 3D gradients. For a better understanding, all layers are
named accordingly.

Figure 9: Screenshot displaying the named folders within the layer shader settings

Additionally, the scene contains an environment object which adds a simple but efficient
black fog along the camera’s Z-axis. This fades out superfluous visual detail in the
distance which otherwise would distract the eye.

Conclusion
This article describes two approaches on using visible volumetric lights for creating
clouds or complex nebula-like effects. The next article of this series, Surprising
Volumetric Effects in Cinema 4D* Part 2: Erupting Plasma and Sliced Clouds, will explore
creating an animated sun corona and shadow casting puffy clouds.

More detail on Marc and his work can be found the Intel® Developer Zone, including
Mountainvista, SIGGRAPH 2018, and Comparing 3D Rendering Performance Using the
Cinema 4D Mountainvista Scene Workload. Also, check out the Cinema 4D Release 20
that was announced during SIGGRAPH 2018. Visit the Intel® Game Dev program to for
the latest updates and resources to help you elevate your game development.

Resources
Intel® Core™ i9-7980XE Extreme Edition processor
Cinema 4D

About the Author
Intel® Software Innovator Marc Potocnik is a German designer and founder of animation
studio renderbaron (www.renderbaron.de). renderbaron specializes in the production of
high-quality 3D animation and visual effects for a wide range of high-profile companies
including ZDF, Audi, Siemens, BMW, a.o.

Marc studied communications design at the University of Applied Sciences in Düsseldorf
entering the world of 3D with Cinema 4D R4 in 1997. He founded renderbaron in 2001
and went on to become an authority in shading, lighting and rendering with Cinema 4D.
Marc is qualified as a Maxon* Lead Instructor and has correspondingly written the Maxon
QuickStart Training: Shading, Lighting & Rendering. He also regularly
shares his knowledge at conferences around the world including SIGGRAPH, IBC and
FMX. Follow along with renderbaron projects on Facebook.

